Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Clin. transl. oncol. (Print) ; 10(3): 137-142, mar. 2008. ilus
Artigo em Inglês | IBECS | ID: ibc-123423

RESUMO

Melanoma is a malignant tumour derived from melanocytes (dendritic cells originated from the neural crest and capable to produce melanin synthesis) that could be established on the skin or less frequently on the uvea. The cellular origin from both kind of melanoma seems to be the same but the melanocytes migrates to the epithelia for cutaneous melanoma, while for uveal melanoma, they migrate to mesodermic tissues. Despite the common origin, both melanomas show extreme differences in their metastatic potential, clinical response to treatments, immune response and genetic alterations. We will describe some of those differences in this review (AU)


No disponible


Assuntos
Humanos , Masculino , Feminino , Neoplasias Cutâneas/patologia , Melanoma/patologia , Neoplasias Uveais/patologia , Células Dendríticas/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Melanoma/genética , Melanoma/imunologia , Neoplasias Uveais/genética , Neoplasias Uveais/imunologia , Melanócitos/patologia
2.
Clin Transl Oncol ; 8(12): 858-67, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17169759

RESUMO

Cancer is a multigenic disorder involving mutations of both tumor suppressor genes and oncogenes. A large body of preclinical data, however, has suggested that cancer growth can be arrested or reversed by treatment with gene transfer vectors that carry a single growth inhibitory or pro-apoptotic gene or a gene that can recruit immune responses against the tumor. Many of these gene transfer vectors are modified viruses. The ability for the delivery of therapeutic genes, made them desirable for engineering virus vector systems. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Because these vector systems have unique advantages and limitations, each has applications for which it is best suited. Retroviral vectors can permanently integrate into the genome of the infected cell, but require mitotic cell division for transduction. Adenoviral vectors can efficiently deliver genes to a wide variety of dividing and nondividing cell types, but immune elimination of infected cells often limits gene expression in vivo. Herpes simplex virus can deliver large amounts of exogenous DNA; however, cytotoxicity and maintenance of transgene expression remain as obstacles. AAV also infects many non-dividing and dividing cell types, but has a limited DNA capacity. This review discusses current and emerging virusbased genetic engineering strategies for the delivery of therapeutic molecules or several approaches for cancer treatment.


Assuntos
Antineoplásicos/uso terapêutico , Terapia Genética/métodos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Técnicas de Transferência de Genes , Vetores Genéticos , Neoplasias/virologia
3.
Clin. transl. oncol. (Print) ; 8(12): 858-867, dic. 2006. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-126345

RESUMO

Cancer is a multigenic disorder involving mutations of both tumor suppressor genes and oncogenes. A large body of preclinical data, however, has suggested that cancer growth can be arrested or reversed by treatment with gene transfer vectors that carry a single growth inhibitory or pro-apoptotic gene or a gene that can recruit immune responses against the tumor. Many of these gene transfer vectors are modified viruses. The ability for the delivery of therapeutic genes, made them desirable for engineering virus vector systems. The viral vectors recently in laboratory and clinical use are based on RNA and DNA viruses processing very different genomic structures and host ranges. Particular viruses have been selected as gene delivery vehicles because of their capacities to carry foreign genes and their ability to efficiently deliver these genes associated with efficient gene expression. These are the major reasons why viral vectors derived from retroviruses, adenovirus, adeno-associated virus, herpesvirus and poxvirus are employed in more than 70% of clinical gene therapy trials worldwide. Because these vector systems have unique advantages and limitations, each has applications for which it is best suited. Retroviral vectors can permanently integrate into the genome of the infected cell, but require mitotic cell division for transduction. Adenoviral vectors can efficiently deliver genes to a wide variety of dividing and nondividing cell types, but immune elimination of infected cells often limits gene expression in vivo. Herpes simplex virus can deliver large amounts of exogenous DNA; however, cytotoxicity and maintenance of transgene expression remain as obstacles. AAV also infects many non-dividing and dividing cell types, but has a limited DNA capacity. This review discusses current and emerging virusbased genetic engineering strategies for the delivery of therapeutic molecules or several approaches for cancer treatment (AU)


Assuntos
Antineoplásicos/uso terapêutico , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Neoplasias/terapia , Neoplasias/virologia , Terapia Viral Oncolítica/métodos
4.
Oncología (Barc.) ; 28(8): 394-406, ago. 2005. graf
Artigo em Es | IBECS | ID: ibc-041163

RESUMO

El efecto citotóxico de las drogas antitumorales es producido mediante la inducción de apoptosis. Esta observaciónimplica la posibilidad de que los factores que afecten la activación de caspasas pueden ser determinantesimportantes como sensibilizantes a los tratamientos antitumorales. Aquí, examinamos el efecto de la sobreexpresiónde caspasa-1 en la respuesta a la quimio y radioterapia. La expresión de la caspasa-1 mediada porun vector adenoviral fue capaz de matar directamente a las células y de sensibilizar las restantes a cisplatino oradiación gamma in vitro. En células HeLa transfectadas establemente con caspasa-1, la sensibilización a cisplatinofue debida a una amplificación en la vía mitocondrial de apoptosis inducida por cisplatino pero esteefecto es independiente del estado de p53, JNK o p38 en la célula


The cytotoxic effect of anticancer drugs has been shown to involve induction of apoptosis. This observationraises the possibility that factors affecting caspase activation might be important determinants as anticancerdrug sensitivity. Ectopic expression of caspase-1 has been shown to trigger apoptosis. Here, we examine theeffect of caspase-1 over-expression on the response to chemotherapy and radiotherapy. Caspase-1 expressionmediated by an adenoviral vector was able to kill directly cells and to sensitize the remaining cells to cisplatinor ã-radiation in vitro. In HeLa cells stably transfected with caspase-1, sensitisation to cisplatin was due to anamplification of the cisplatin-induced mitochondrial apoptotic pathway activation but this effect is independentof p53, JNK or p38 status


Assuntos
Humanos , Caspase 1/farmacocinética , Cisplatino/farmacocinética , Antineoplásicos/farmacocinética , Tolerância a Radiação , Tolerância a Medicamentos , Apoptose , Proteína Supressora de Tumor p53/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...